Calculation policy: Addition

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

Expanded Column Method

A place value grid or Dienes can be used to support the Introduction to the column method through partitioning. understanding of the expanded method of addition.
This should be introduced alongside the concrete or pictorial representation.

$$
\begin{aligned}
& 47 \quad 25 \quad 60+12
\end{aligned}
$$

Formal Written Method

Children to represent the counters in a place value chart, circling when they make an exchange.

Use of place value counters to add HTO + TO, HTO + HTO etc. When there are 10 ones in the 1 s column- we exchange for 1 ten, when there are 10 tens in the 10s column - we exchange for 1 hundred.

Calculation policy: Subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease.

Concrete	Pictorial	Abstract
Physically taking away and removing objects from a whole (Ten frames, Numicon, cubes and other items such as beanbags could be used).	$x\|x\| x \mid$	
Counting back using number lines (or number tracks)		The jumps are recorded above the representation. Subtracting in tens before moving onto ones. $126-45=?$

Formal Column method

(using place value counters)

234-88

Represent the place value counters pictorially; remembering \quad Formal column method. Children must to show what has been exchanged.

understand what has happened when they have crossed out digits.

$$
\begin{aligned}
& 932-457=475 \\
& { }^{8} q^{12} b^{1} 2 \\
& 457 \\
& 475
\end{aligned}
$$

Calculation policy: Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

Concrete	Pictorial	Abstract
Repeated grouping/repeated addition $\begin{gathered} 3 \times 4 \\ 4+4+4 \end{gathered}$ There are 3 equal groups, with 4 in each group. Use arrays to illustrate commutativity (Counters and other objects can also be used.) 2 lots of 5 5 lots of 2	Children to represent the practical resources in a picture and use a bar model. Children to represent the arrays pictorially.	$\begin{gathered} 3 \times 4=12 \\ 4+4+4=12 \end{gathered}$ Children to be able to use an array to write a range of calculations (number sentences) e.g. $\begin{gathered} 10=2 \times 5 \\ 5 \times 2=10 \\ 2+2+2+2+2=10 \\ 10=5+5 \end{gathered}$

Partition to multiply (using Numicon, base 10)	Children to represent the concrete manipulatives pictorially.	Children to be encouraged to show the steps they have taken.
$4 \times 15=$		$\begin{aligned} 10 \times 4 & =40 \\ 5 \times 4 & =20 \\ 40+20 & =60 \end{aligned}$
Grid method to multiply	Children to represent the concrete manipulatives pictorially.	
The two digit number is partitioned horizontally with the tens digit coming first. This time the equation is represented using place value counters or Base 10.		This method can be used alongside column multiplication

		In Upper Key Stage 2, children will be shown how to use the 'Coin Fact' method for multiplication and division:
$1 \times 12=12$ (find this first)		
$2 \times 12=24$ (double the answer above)		
$5 \times 12=60$ (now half the 10x)		
$10 \times 12=120$ (times the first by 10)		
$20 \times 12=240$ (double the 10x)		
$50 \times 12=600$ (half the 100 times)		
$100 \times 12=1200$ (times the 10x by 10)		

Calculation policy: Division

Key language: share, group, divide, divided by, half.

Concrete	Pictorial	Abstract
Sharing (Using a range of objects.) $6 \div 2$	Represent the sharing pictorially.	$6 \div 2=3$3 3 When sharing, children should be encouraged to use their chosen times tables
Grouping (with use of a number line) Children should apply their counting skills to develop some understanding of grouping. How many 3s in 15? $15 \div 3=5$	Use of arrays as a pictorial representation for division. $15 \div 3=5$ There are 5 groups of 3 . $15 \div 5=3$ There are $\mathbf{3}$ groups of 5 . Grouping using a number line Group from zero in jumps of the divisor to find out 'how many groups of 6 are there in 30?	Abstract number line to represent "Efficient Grouping'. The equal groups that have been subtracted. ```\[48 \div 4=12 \]``` Children need to be able to partition the dividend in different ways. Answers with remainders: $49 \div 4=12 r 1$

Short division

Using place value counters to group.

$$
615 \div 5
$$

100 s	10s	1s
		00000
	000	00000
		0000

1. Make 615 with place value counters.
2. How many groups of 5 hundreds can you make with 6 hundred counters?
3. Exchange 1 hundred for 10 tens.
4. How many groups of 5 tens can you make with 11 ten

counters?

5. Exchange 1 ten for 10 ones.
6. How many groups of 5 ones can you make with 15 ones?

Long division (with chunking)

If children are taught how to efficiently group they will see the link to chunking

Represent the place value counters pictorially.

$\mathrm{HTO} \div \mathrm{TO}$ (without remainders)

Children to the calculation using the short division scaffold.

123
 $5161^{\prime} 5$

HTO \div TO (with remainders)
$327 \div 19$
$1 9 \longdiv { 2 3 ^ { 1 } 2 7 }$
$-\frac{190}{{ }^{0} x^{1} 37}(10 x 19)$
$-\frac{95}{3 / 44^{1} 2}(5 \times 19)$
38
04 (2×19)

